
Binary and Gray Encoding in Univariate Marginal Distribution
Algorithm, Genetic Algorithm, and Stochastic Hillclimbing

Uday K. Chakraborty
Dept. of Math & Computer Science

University of Missouri
St. Louis, MO 63121, USA

uday@cs.umsl.edu

Cezary Z. Janikow
Dept. of Math & Computer Science

University of Missouri
St. Louis, MO 63121

Abstract

This paper employs a Markov model to
study the relative performance of binary and
Gray coding in the univariate marginal dis-
tribution algorithm, genetic algorithm, and
stochastic hillclimbing. The results indicate
that while there is little difference between
the two for all possible functions, Gray cod-
ing does not necessarily improve performance
for functions which have fewer local optima
in the Gray representation than in binary.

1 INTRODUCTION

Use of Gray coding has been shown to produce im-
proved genetic algorithm performance in some cases
[9, 2, 16]. This has led some researchers (e.g., [5]) to
abandon binary coding in favor of Gray. Some others
(e.g., [8]), however, did not find Gray helpful. Most
of the previous research into the binary-versus-Gray
issue in genetic algorithms has been based on (non-
exhaustive) empirical studies. In this paper, we under-
take a Markov chain theory-based exhaustive numeri-
cal approach to investigate the relative performance of
the two representations in three cases: (1) univariate
marginal distribution algorithm (UMDA) [12], (2) ge-
netic algorithm (GA), and (3) stochastic hillclimbing
(SH). As expected, due to the no-free-lunch theorem
[20], our model indicates that for all possible functions
there is little difference between the two. In [14, 19],
it was argued that Gray encoding would outperform
binary encoding on the special class of functions for
which the number of local minima in the binary Ham-
ming space is greater than the corresponding number
in the Gray Hamming space. Our results show that
even though it is often the case, it is not universally
true.

2 LOCAL OPTIMA

In any binary representation, the neighbors of a given
string are those with Hamming distance one. In the
integer representation, the neighbors are those integers
immediately greater and smaller. Thus, an L-bit string
has exactly L neighbors in any binary representation
and two such neighbors in the integer representation.
A local optimum in a discrete search space is a point
whose fitness is better than those of all of its neighbors.

It is possible for a function to have different numbers
of local optima under different neighborhoods (i.e., dif-
ferent representations). The number of local optima of
a fitness landscape is also referred to as its modality.

As an example, let us consider a discrete function of a
single variable, F (x), where the independent variable
x can have a total of eight possible values. The eight x
values can, without loss of generality, be mapped to the
eight integers 0, 1, . . ., 7. In the integer neighborhood,
integer j has exactly two neighbors: j−1 and j+1. We
consider a wrapping neighborhood, that is, x = 7 has
neighbors x = 6 and x = 0, and x = 0 has neighbors
x = 1 and x = 7. Function F is said to have a local
optimum at x = j if F (j) is better than both F (j− 1)
and F (j + 1). It is easy to see that in the integer
neighborhood, the number of local optima of F (x) in
the above example can be 1, 2, 3 or 4.

In the Gray representation, the eight strings are 000,
001, 011, 010, 110, 111, 101, 100. Unlike the inte-
ger coding, each point in the Gray coding has exactly
three neighbors. For example, the string 110 has 010,
111 and 100 as its neighbors. The binary encoding
also induces three neighbors, but in general both the
number and the relative locations of the local optima
of a given function are different for integer, Gray and
binary neighborhoods. For example, the function in
Table 1 has 2, 1, and 3 local minima in the integer,
Gray, and binary representations, respectively (F (x)

Table 1: A function may have different numbers of lo-
cal minima in integer, Gray and binary neighborhoods.

x F (x)
Integer Gray Binary

0 000 000 20
1 001 001 0
2 011 010 10
3 010 011 40
4 110 100 60
5 111 101 50
6 101 110 70
7 100 111 30

Local minima
Integer Gray Binary

0 at x = 1
50 at x = 5

0 at x = 001
0 at x = 001
10 at x = 010
30 at x = 111

is an arbitrary function).

3 MARKOV MODEL OF GENETIC
ALGORITHM

Markov chains have a long history of being used in
the analysis of evolutionary algorithms (e.g., [7, 18,
13, 4, 17, 3, 15]). In the Markov model used here each
population configuration represents a state. Let N and
L represent, respectively, the population size and the
string length. The number of occurrences of each of
the 2L strings in a given state is given by state(i) for
i ∈ S where S = {0, 1, . . . , 2L−1}. Let s represent the
state space of the genetic algorithm. Then the size of
the state space is given by ([13])

|s| =
(
N + 2L − 1

N

)
.

Given a particular state (state), fitness-proportionate
selection [6] selects a particular string (str) with prob-
ability

Psel(str|state) =
F (str) · state(str)∑
j∈S F (j) · state(j)

,

where F represents the fitness function. In the present
model, two parent strings are selected (using pro-
portional selection with replacement), crossed with
probability of crossover pc, and two children are pro-
duced by a head-tail swap (one-point crossover) of
the parents. Finally, one of the two children is ran-
domly chosen to go to the next generation. Thus the
probability of creating a particular string, str, from
a particular state, state, by the application of selec-
tion and crossover is given by Psel−cross(str|state) =
pc ×

∑
str1, str2 ∈ Sstr1 ≤ str2 {Psel(str1|state) ×

Psel(str2|state)} ×
1

L−1

∑L−1
cutpoint=1Generate(str1, str2, str, cutpoint) +

(1 − pc)Psel(str|state)
where the function Generate(str1, str2, str, cutpoint)
returns 1 or 0 depending on whether or not the string
str can be generated by crossing strings str1 and str2
at the cross-site denoted by cutpoint. Bit-wise muta-
tion (with mutation probability pm) changes a string,
str1 to another, str2 with probability

Pmut(str2|str1) = pH(str1,str2)
m ×(1−pm)L−H(str1,str2)

where H(i, j) is the Hamming distance between strings
i and j. Therefore the probability that a particu-
lar string, str, is obtained from a particular state,
state, by the application of selection, crossover and
mutation is given by Psel−cross−mut(str|state) =∑
j∈S Pmut(str|j) · Psel−cross(j|state). The transition

from one state, state1, to another, state2, in a genera-
tional, non-elitist, simple genetic algorithm is governed
by a multinomial distribution, and the transition prob-
ability is given by

P (state2|state1) =
N !∏

str∈S state2(str)!
×∏

str∈S
(Psel−cross−mut(str|state1))state2(str). (1)

4 MARKOV MODEL OF UMDA

We consider the following univariate marginal distri-
bution algorithm:

1. Set t = 0; create N individuals randomly.

2. Select Nselect ≤ N individuals according to
fitness-proportionate selection.

3. Compute the marginal frequencies pselect(Xi, t),
i = 0, . . . , L− 1, from the selected individuals.

4. Sample N new individuals according to the dis-
tribution

p(X0, X1, . . . , XL−1, t+ 1) =
L−1∏
i=0

pselect(Xi, t);

set t = t+ 1.

5. Apply mutation (with a pre-determined probabil-
ity) to the individuals created in the above step.

6. If the termination criteria are not satisfied, go to
step 2.

We will compute two transition probability matrices:
one corresponding to selection (step 2) , the other cor-
responding to sampling followed by mutation (steps 4
and 5). The final transition matrix of UMDA will be
given by the product of these two matrices.

In UMDA, a single sampling operation creates a string
str ∈ {0, 1, · · · , 2n − 1} with probability

Psample(str|state) =
L−1∏
i=0

prob(biti = αi),

where biti, the i-th bit (gene) in the string str,
has the value (allele) αi ∈ {0, 1}. Note that∑
str∈S Psample(str|state) = 1. The probability at

each locus can be computed from the configuration of
the current population (state). The probability that
mutation changes a string str1 to another, str2, is given
by

Pmut(str2|str1) = pH(str1,str2)
m ×(1−pm)L−H(str1,str2)

where H(i, j) is the Hamming distance between strings
i and j, and pm is the probability of mutation. The
state transition is described as sampling from a multi-
nomial distribution:

Psample−mut(state2|state1) =
N !∏

str∈S state2(str)!
×∏

str∈S
(Psample−mut(str|state1))state2(str), (2)

where

Psample−mut(str|state) =
∑
j∈S

Pmut(str|j)·Psample(j|state).

Given a particular state (state), fitness-proportionate
selection selects a particular string (str) with proba-
bility

Psel(str|state) =
F (str) · state(str)∑
j∈S F (j) · state(j)

,

where F represents the fitness function. The transition
probability matrix corresponding to selection alone is
given by

Psel(state2|state1) =
N !∏

str∈S state2(str)!
×∏

str∈S
(Psel(str|state1))state2(str). (3)

The final transition matrix of UMDA (with propor-
tional selection and mutation) is then given by the
product of the two matrices given by equations 2 and
3:

PUMDA = Psel × Psample−mut. (4)

5 EXPECTED FIRST PASSAGE
TIME TO CONVERGENCE

For a nonzero pm, the Markov chain (in both GA
and UMDA) is irreducible, that is, every state can
be reached from every other state (all the entries
in the transition probability matrix are strictly posi-
tive). In addition, the chain is regular (that is, ergodic
with no cycles). By standard Markov chain theory
it can be shown that the asymptotic transition prob-
ability distribution possesses a limit — the station-
ary distribution — and is independent of the starting
state. Thus for the three-operator genetic algorithm,
lim t→∞P(t) has all rows identical and no element in
a row is zero.

We fill the
(
N + 2L − 1

N

)
×
(
N + 2L − 1

N

)
transi-

tion probability matrix with probabilities obtained by
using equation 1 (for GA) or 4 (for UMDA). We com-
pare the performances of binary and Gray encodings
using the following metric: the expected first passage
time to a state that contains at least one copy (in-
stance) of the global optimum. Clearly, the lower this
value, the better.

We denote by p
(t)
ij the probability of transition from

state i to state j in t steps. Let f (t)
ij stand for the

probability that starting from state i the first entry to
state j occurs at the t-th step:

P (Tij = t) = f
(t)
ij ,

where T is a random variable representing the first
passage time. We put f (0)

ij = 0 for i 6= j, and f (0)
jj = 1.

Then f
(1)
ij = p

(1)
ij = pij and

p
(t)
ij =

t∑
m=1

f
(m)
ij p

(t−m)
jj

where p(0)
jj = 1, and p

(0)
ij = 0 for i 6= j. We can now

get the f ’s recursively:

f
(t)
ij = p

(t)
ij −

t−1∑
m=1

f
(m)
ij p

(t−m)
jj

For a GA (or UMDA) with nonzero pm, the {f (t)
ij } for

any given pair of states (i, j) is a true probability dis-
tribution, that is,

∑∞
t=1 f

(t)
ij = 1. The mean (expected)

first passage time to state j, starting from state i, is
then given by

E(Tij) =
∞∑
t=1

t · f (t)
ij .

The mean first passage time can be calculated by us-
ing the iterates of the transition probability matrix P.
However, the mean and the variance of the first pas-
sage time can also be obtained algebraically [11].

Let sg represent the set of states containing at least one
copy of the global optimum. Let h and k be two states
such that k ∈ sg, and h ∈ s\sg. To study what hap-
pens when, given an initial state h, the algorithm hits
the state k for the first time, we can ”stop” the pro-
cess as soon as it reaches state k. We can accomplish
this ”stopping” by making k an absorbing state. In
fact, we can go further and make each global-optimum-
containing state an absorbing state. Finally, since we
are interested in finding at least one copy of the global
optimum, the absorbing states thus created can all be
lumped into a single absorbing state, making our task
easier. The modified transition probability matrix, P ′,
then has exactly one absorbing state and the other
states are transient. Let Q be the matrix obtained
by truncating P ′ to include only the non-absorbing
states. (As an example, for L = 3 and N = 2, P
is a 36 × 36 matrix, and the dimensions of Q are 28
× 28.) Then I − Q gives the ”fundamental matrix”
[11], and the mean time to absorption, starting from
a given transient state, is given by the row-sum of the
corresponding row of the matrix (I −Q)−1 (the num-
ber of rows in (I − Q)−1 is equal to the number of
non-absorbing states in P ′).

Assuming a uniform random (0, 1) distribution for
generating the bits in the initial generation (t = 0)
of the GA (or the UMDA), each of the |s| states is
equally likely to represent the initial population, and
this probability is 1

|s| . The expected value of the ex-
pected first passage time to the global optimum is then
given by

E =
1
|s|

|s|∑
i=1

E(Ti) (5)

where E denotes expectation, and Ti is a random vari-
able for the first passage time, given the start state i.
For an absorbing state i, P (Ti = 0) is unity.

The expected value E is computed for both binary and
Gray encoding and is used as the basis of comparison
in the remainder of this paper.

6 STOCHASTIC HILLCLIMBING

The following version of stochastic hillclimbing [1] is
used in this paper (the problem considered is one of
minimization):

1. Select a point — the current point, xc — at ran-

dom and evaluate it. Let the fitness be fc.

2. Select an adjacent point, xa, at random and eval-
uate it. Let fa be its fitness.

3. Accept the adjacent point as the current point
(that is, xc ← xa with probability 1

1+e
fa−fc
T

where

T is a parameter (the ”temperature”) of the algo-
rithm.

4. If a predetermined termination condition is not
satisfied, go to step 2.

In stochastic hillclimbing the search begins with a sin-
gle point and proceeds from one point (state) to an-
other. For an L-bit problem the search space consists
of 2L points (states). At any single step, the process
can move from a given point to itself or to any one
of the L adjacent points (an adjacent point is a unit-
Hamming-distance neighbor). A move from a current
state fi to a next (adjacent) state fj takes place with
probability

1
L
· 1

1 + e(fj−fi)/T
.

The process stays in the same state fi with probability

1− 1
L

∑
k∈Ai

1
1 + e(fk−fi)/T

where Ai is the set of states that are adjacent to fi,
|Ai| = L.

Therefore the entries of the 2L × 2L transition prob-
ability matrix of the Markov chain for stochastic hill-
climbing are given by

pij =


1
L ·

1

1+e(fj−fi)/T
for j ∈ Ai

1− 1
L

∑
k∈Ai

1
1+e(fk−fi)/T

for i = j

0 otherwise
(6)

In this case, there is exactly one optimal state (and
that state corresponds to the globally best string).
When we make that state into an absorbing state, the
truncated matrix of size (2L− 1)× (2L− 1) represents
the Q matrix referred to earlier. We can now obtain
the mean first passage times to optimality from row-
sums of the matrix (I −Q)−1.

7 RESULTS

There are infinitely many functions defined over L bits,
differing by function evaluations and their permuta-
tions. To have a finite case, we restrict function eval-
uations to the range 1 to 2L and we permute these

2L distinct values. Thus, for L = 3, we have a to-
tal of (23)! = 40,320 different functions, correspond-
ing to as many permutations. For example, L = 3
gives 23 = 8 function evaluations: 1,2, . . . , 8, and
for these 8 evaluations, one possible permutation is
{F (0) = 1, F (1) = 2, . . . , F (7) = 8}.

Without loss of generality, we consider a minimization
problem. For each of these 40,320 functions, we count
the number of optima in each of the three represen-
tations. In Table 2 we show these counts in four cat-
egories, corresponding to 1, 2, 3 and 4 local minima
in the integer representation. For instance, out of a
total of 40,320 functions, 2176 have four minima each
in the integer representation. Among these 2176 func-
tions, 32 have two minima, 704 have three, and 1440
have four each in the Gray representation. Again, the
same 2176 functions can be grouped into two classes:
1408 functions having one minimum each and 768 with
two minima each in the binary representation. There-
fore, as expected, a given function can have different
numbers of local minima under different representa-
tions. However, the total number of functions with
a given number of minima is the same for Gray and
binary representations (see Table 3). By covering all
(2L)! functions, we have included all possible situa-
tions. For example, over 3 bits, there will always be
exactly 1232 functions with 2 local minima in the in-
teger neighborhood, 2 in the Gray neighborhood and
3 in binary, regardless of the particular fitness values
assigned to the individual strings.

Table 2: The number of local minima in all possible
functions defined over three bits. The functions are
divided into 4 categories corresponding to 1,2,3 or 4
local minima in the integer neighborhood. See also
Table 3.

Integer Gray Binary
#min #fun #min #fun #min #fun

1 512 1 512
1
2
3

64
384
64

2 14592
1
2

6144
8448

1
2
3
4

3056
10032
1360
144

3 23040
1
2
3

1984
16000
5056

1
2
3
4

4112
13296
4336
1296

4 2176
2
3
4

32
704

1440

1
2

1408
768

Total 40320 40320 40320

Performance comparisons for the GA (L = 3, N = 2,
pc = 0.8, pm = 0.05), the UMDA (L = 3, N = 2, pm =

Table 3: The total number of functions with 1,2,3 or 4
local minima under the three neighborhoods. L = 3.

#minima #functions in different neighborhoods
Integer Gray Binary

1 512 8640 8640
2 14592 24480 24480
3 23040 5760 5760
4 2176 1440 1440

Total 40320 40320 40320

0.05) and SH (L = 3) are shown in Tables 4 - 7 where
the expected first passage times (equation 5) have been
used as the basis of comparison. An encoding is better
if it has a smaller expected first passage time to find
the global optimum. Note that no GA / UMDA / SH
runs (experiments) were performed; we obtained the
first passage times theoretically, via the Markov chain
calculations of Sections 3 - 6. For presentation, the
functions are divided into 26 equivalence groups based
on the number of local minima in the three neighbor-
hoods.

Table 4: Performance comparison of Binary and Gray
coding in the GA (L = 3, N=2, pc = 0.8, pm = 0.05).
Gray wins a total of 19296 times, binary wins 21024
times. I = Integer, G = Gray, B = Binary

#Func #Minima No. of Times Coding Better
I G B Gray Binary

64 1 1 1 40 24
384 1 1 2 380 4
64 1 1 3 64 0
768 2 1 1 324 444
5248 2 1 2 5032 216
128 2 1 3 128 0
2288 2 2 1 52 2236
4784 2 2 2 1764 3020
1232 2 2 3 532 700
144 2 2 4 84 60
224 3 1 1 116 108
1568 3 1 2 1500 68
192 3 1 3 192 0
2016 3 2 1 276 1740
9024 3 2 2 5132 3892
3664 3 2 3 2332 1332
1296 3 2 4 924 372
1872 3 3 1 0 1872
2704 3 3 2 332 2372
480 3 3 3 24 456
16 4 2 1 0 16
16 4 2 2 8 8
432 4 3 1 0 432
272 4 3 2 60 212
960 4 4 1 0 960
480 4 4 2 0 480

As we observe from the tables, both representations
produce approximately the same number of winners.
This reiterates the known fact [20] that no represen-

tation should be superior for all classes of problems.
The small discrepancy may probably be attributed to
the choice of parameters. To evaluate the effect of
operator probabilities, we re-calculated the first pas-
sage times for different probabilities. Table 5 shows
some representative cases. We can see that while the
relative performance is affected by the parameter val-
ues, the differences are not very significant even for
the extreme crossover/mutation rates. The results are
dependent on the (raw) fitnesses because of our use
of fitness-proportionate selection. Use of a rank-based
selection would eliminate that dependence.

Table 5: Performance comparison of Binary and Gray
coding in the GA (different crossover and mutation
probabilities have been used). L = 3, N = 2.

#Func #Min Parameters Times Winner
I G B pc pm Gray Binary

64 1 1 3 0.8 0.05 64 0
0.0 0.1 60 4

1232 2 2 3 0.8 0.05 532 700
0.0 0.2 500 732
1.0 0.001 640 592

144 2 2 4 0.8 0.05 84 60
0.0 0.2 68 76
1.0 0.001 84 60

272 4 3 2 0.8 0.05 60 212
0.0 0.1 56 216
1.0 0.0001 64 208

Overall, the results show that contrary to popular be-
lief, it is not necessarily true that fewer local optima
make the task easier for the genetic algorithm. (The
9th row in Table 4, showing 1232 functions with 2, 2
and 3 local minima in integer, Gray and binary rep-
resentations, respectively, is particularly interesting:
binary is the winner in more that half of the 1232 func-
tions.) This corroborates Horn and Goldberg [10], who
have shown that some maximally multimodal func-
tions can be easier than unimodal functions for the
genetic algorithm. In [14, 19] it was argued that Gray
would be better than binary for functions with fewer
local optima in the Gray Hamming space than in the
binary Hamming space. From the above results we see
that this is not always true.

8 CONCLUSIONS

This paper has shed some light on the Gray-versus-
binary debate in evolutionary computation. Finite-
population models of univariate marginal distribu-
tion algorithm and genetic algorithm, and a model
of stochastic hillclimbing have been developed using
well-known techniques from Markov chain theory, and
the relative performance of Gray and binary encod-

Table 6: Performance comparison of Binary and Gray
coding in the UMDA (L = 3, N=2, pm = 0.05).

#Func #Minima No. of Times Coding Better
I G B Gray Binary

64 1 1 1 40 24
384 1 1 2 380 4
64 1 1 3 64 0
768 2 1 1 324 444
5248 2 1 2 5032 216
128 2 1 3 128 0
2288 2 2 1 52 2236
4784 2 2 2 1764 3020
1232 2 2 3 532 700
144 2 2 4 84 60
224 3 1 1 116 108
1568 3 1 2 1500 68
192 3 1 3 192 0
2016 3 2 1 276 1740
9024 3 2 2 5132 3892
3664 3 2 3 2332 1332
1296 3 2 4 924 372
1872 3 3 1 0 1872
2704 3 3 2 332 2372
480 3 3 3 24 456
16 4 2 1 0 16
16 4 2 2 8 8
432 4 3 1 0 432
272 4 3 2 60 212
960 4 4 1 0 960
480 4 4 2 0 480

ing studied using the expected first passage time to
optimality as the figure of merit. Over all possible
functions there is not much difference between the two
representations, but fewer local optima do not nec-
essarily make the task easier for Gray coding. The
present model is complete, that is, all the three oper-
ators – selection, crossover and mutation – have been
taken into account, and it is exact, that is, it does not
need any approximation or assumption. The results
were validated for different probabilities of mutation
and crossover.

A limitation of the present approach is that it allows us
to study all possible functions defined on up to 3 bits.
An exhaustive enumeration of all possible functions on
a large number of bits and calculating the first passage
times is computationally prohibitive (for 4 bits, there
are 16! ≈ 2× 1013 possible functions).

Acknowledgments

We are grateful to two anonymous referees for their
comments.

Table 7: Performance comparison of Binary and Gray
coding in stochastic hillclimbing. L = 3.

#Func #Minima T Times Coding Better
I G B Gray Binary

384 1 1 2 10 356 28
5 372 12

5248 2 1 2 10 4560 688
20 4488 760

2288 2 2 1 10 308 1980
15 336 1952
12 328 1960

1232 2 2 3 0.9 640 592
0.1 696 536
0.5 656 576
0.8 656 576
1.0 652 580
5.0 668 564

1568 3 1 2 10 1308 260
5 1368 200
15 1284 284
20 1268 300

2016 3 2 1 10 548 1468
12 552 1464
15 560 1456

3664 3 2 3 10 2392 1272
15 2368 1296

2704 3 3 2 0.2 720 1984
0.5 680 2024

272 4 3 2 0.5 112 160
1.0 76 196

References

[1] Ackley, D. H. (1997): A Connectionist Machine
for Genetic Hillclimbing, Boston, MA: Kluwer
Academic Publishers.

[2] Caruana, R.A. and Schaffer, J.D. (1988): Repre-
sentation and hidden bias: Gray vs. binary cod-
ing for genetic algorithms, Proc. 5th Internat.
Conf. on Machine Learning, pp. 153-161, Los Al-
tos: CA, Morgan Kaufmann.

[3] Chakraborty, U.K., Deb, K. and Chakraborty,
M. (1996): Analysis of selection algorithms: A
Markov chain approach. Evolutionary Computa-
tion 4(2), 133-167.

[4] Davis, T.E. and Principe, J.C. (1993). A Markov
chain framework for the simple genetic algorithm.
Evolutionary Computation, 1, 269-288.

[5] Eshelman, L.J. (1991): The CHC adaptive search
algorithm, Foundations of Genetic Algorithms - I,
Morgan Kaufmann.

[6] Goldberg, D.E. (1989): Genetic Algorithms in
Search, Optimization, and Machine Learning,
Boston: Addison-Wesley.

[7] Goldberg, D.E. and Segrest, P. (1987). Finite
Markov chain analysis of genetic algorithms. In
J.J. Grefenstette (Ed.), Proc. 2nd International
Conf. on Genetic Algorithms (pp. 1-8). Hillsdale,
NJ: Lawrence Erlbaum.

[8] Haupt, R.L. and Haupt, S.E. (1998) Practical Ge-
netic Algorithms, New York: Wiley.

[9] Hollstein, R.B. (1971): Artificial genetic adap-
tation in computer control systems, PhD Thesis,
Univ. of Michigan.

[10] Horn, J., Goldberg,D.E., Genetic algorithm dif-
ficulty and the modality of fitness landscapes,
FOGA-3, 1994, 243-269.

[11] Kemeny, J.G. and Snell, J.L. (1960) Finite
Markov Chains, Van Nostrand, Princeton.

[12] Muehlenbein, H. & Paass, G. (1996) From recom-
bination of genes to estimation of distributions,
Proc. PPSN-IV, Springer.

[13] Nix. A.E. and Vose, M.D. (1992). Modeling ge-
netic algorithms with Markov chains. Annals of
Mathematics and Artificial Intelligence 5, 79-88.

[14] Rana, S.B., Whitley, L.D. (1997): Bit representa-
tions with a twist. Proc. 7th ICGA, pp. 188-195.

[15] Rudolph, G., Finite Markov Chain Results in
Evolutionary Computation: A Tour d’Horizon,
Fundamenta Informaticae 35(1-4):67-89, 1998.

[16] Schaffer, J.D. et al. A study of control parameters
affecting online performance of genetic algorithms
for function optimization, Proc. 3rd ICGA, 1989
(Morgan Kaufmann).

[17] Suzuki, J. (1993). A Markov chain analysis on a
genetic algorithm. In S. Forrest (Ed.), Proc. Fifth
Int’l Conf. on Genetic Algorithms (pp. 146-153).
San Mateo, CA: Morgan Kaufmann.

[18] Vose, M.D. (1993). Modeling simple genetic al-
gorithms. In L.D. Whitley (Ed.), Foundations of
Genetic Algorithms - 2 (pp. 63-74). San Mateo,
CA: Morgan Kaufmann.

[19] Whitley, D (1999): A free lunch proof for Gray
versus binary encodings, Proc. Genetic and Evo-
lutionary Computation (GECCO-1999), pp. 726-
733.

[20] Wolpert, D.H. and MacReady, W.G. (1997):
No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1(1),
pp. 67-82.

